CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis.

نویسندگان

  • Chuanli Ju
  • Gyeong Mee Yoon
  • Jennifer Marie Shemansky
  • David Y Lin
  • Z Irene Ying
  • Jianhong Chang
  • Wesley M Garrett
  • Mareike Kessenbrock
  • Georg Groth
  • Mark L Tucker
  • Bret Cooper
  • Joseph J Kieber
  • Caren Chang
چکیده

The gaseous phytohormone ethylene C(2)H(4) mediates numerous aspects of growth and development. Genetic analysis has identified a number of critical elements in ethylene signaling, but how these elements interact biochemically to transduce the signal from the ethylene receptor complex at the endoplasmic reticulum (ER) membrane to transcription factors in the nucleus is unknown. To close this gap in our understanding of the ethylene signaling pathway, the challenge has been to identify the target of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) Raf-like protein kinase, as well as the molecular events surrounding ETHYLENE-INSENSITIVE2 (EIN2), an ER membrane-localized Nramp homolog that positively regulates ethylene responses. Here we demonstrate that CTR1 interacts with and directly phosphorylates the cytosolic C-terminal domain of EIN2. Mutations that block the EIN2 phosphorylation sites result in constitutive nuclear localization of the EIN2 C terminus, concomitant with constitutive activation of ethylene responses in Arabidopsis. Our results suggest that phosphorylation of EIN2 by CTR1 prevents EIN2 from signaling in the absence of ethylene, whereas inhibition of CTR1 upon ethylene perception is a signal for cleavage and nuclear localization of the EIN2 C terminus, allowing the ethylene signal to reach the downstream transcription factors. These findings significantly advance our understanding of the mechanisms underlying ethylene signal transduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus

The signaling of the plant hormone ethylene has been studied genetically, resulting in the identification of signaling components from membrane receptors to nuclear effectors. Among constituents of the hormone signaling pathway, functional links involving a putative mitogen-activated protein kinase kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) and a membrane transporter-like protein ETHYLENE INSE...

متن کامل

Separation anxiety

Since the discovery of the CTR1 protein kinase and the endoplasmic reticulum (ER)-localized EIN2 protein nearly 20 y ago, plant biologists have wondered how these proteins respectively serve as negative and positive regulators of ethylene-mediated signal transduction in plants. Now with the publication of four studies, it can be concluded that in the absence of ethylene (ET) in Arabidopsis thal...

متن کامل

EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1.

Genetic studies have identified the membrane protein EIN2 (ethylene insensitive 2) as a central component of ethylene signalling in Arabidopsis. In addition, EIN2 might take part in multiple hormone signalling pathways and in response to pathogens as demonstrated by recent genetic and biochemical studies. Here we show, by an integrated approach using in vivo and in vitro fluorescence techniques...

متن کامل

Ethylene Modulates Sphingolipid Synthesis in Arabidopsis

Sphingolipids have essential structural and bioactive functions in membranes and in signaling. However, how plants regulate sphingolipid biosynthesis in the response to stress remains unclear. Here, we reveal that the plant hormone ethylene can modulate sphingolipid synthesis. The fungal toxin Fumonisin B1 (FB1) inhibits the activity of ceramide synthases, perturbing sphingolipid homeostasis, a...

متن کامل

Novel Protein-Protein Inhibitor Based Approach to Control Plant Ethylene Responses: Synthetic Peptides for Ripening Control

Ethylene signaling is decisive for many plant developmental processes. Among these, control of senescence, abscission and fruit ripening are of fundamental relevance for global agriculture. Consequently, detailed knowledge of the signaling network along with the molecular processes of signal perception and transfer are expected to have high impact on future food production and agriculture. Rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 47  شماره 

صفحات  -

تاریخ انتشار 2012